ON THE DIOPHANTINE EQUATION

Author:

HASANALIZADE ELCHINORCID

Abstract

Abstract A generalisation of the well-known Pell sequence $\{P_n\}_{n\ge 0}$ given by $P_0=0$ , $P_1=1$ and $P_{n+2}=2P_{n+1}+P_n$ for all $n\ge 0$ is the k-generalised Pell sequence $\{P^{(k)}_n\}_{n\ge -(k-2)}$ whose first k terms are $0,\ldots ,0,1$ and each term afterwards is given by the linear recurrence $P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\cdots +P^{(k)}_{n-k}$ . For the Pell sequence, the formula $P^2_n+P^2_{n+1}=P_{2n+1}$ holds for all $n\ge 0$ . In this paper, we prove that the Diophantine equation $$ \begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \end{align*} $$ has no solution in positive integers $k, m$ and n with $n>1$ and $k\ge 3$ .

Publisher

Cambridge University Press (CUP)

Reference7 articles.

1. The generalized Binet formula, representation and sums of the generalized order- $k$ Pell numbers;Kılıç;Taiwanese J. Math.,2006

2. On the exponential Diophantine equation ${F}_n^x\pm {F}_m^x=a$ with $a\in \left\{{F}_r,{L}_r\right\}$;Şiar;Int. J. Number Theory,2023

3. Complete solution of the exponential Diophantine equation ${P}_n^x+{P}_{n+1}^x={P}_m^y$;Faye;Math. Commun.,2022

4. On a generalization of the Pell sequence;Bravo;Math. Bohem.,2021

5. On the exponential Diophantine equation related to powers of two consecutive terms of Lucas sequences;Ddamulira;Ramanujan J.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3