On L-functions of modular elliptic curves and certain K3 surfaces

Author:

Amir MalikORCID,Hong Letong

Abstract

AbstractInspired by Lehmer’s conjecture on the non-vanishing of the Ramanujan $$\tau $$ τ -function, one may ask whether an odd integer $$\alpha $$ α can be equal to $$\tau (n)$$ τ ( n ) or any coefficient of a newform f(z). Balakrishnan, Craig, Ono and Tsai used the theory of Lucas sequences and Diophantine analysis to characterize non-admissible values of newforms of even weight $$k\ge 4$$ k 4 . We use these methods for weight 2 and 3 newforms and apply our results to L-functions of modular elliptic curves and certain K3 surfaces with Picard number $$\ge 19$$ 19 . In particular, for the complete list of weight 3 newforms $$f_\lambda (z)=\sum a_\lambda (n)q^n$$ f λ ( z ) = a λ ( n ) q n that are $$\eta $$ η -products, and for $$N_\lambda $$ N λ the conductor of some elliptic curve $$E_\lambda $$ E λ , we show that if $$|a_\lambda (n)|<100$$ | a λ ( n ) | < 100 is odd with $$n>1$$ n > 1 and $$(n,2N_\lambda )=1$$ ( n , 2 N λ ) = 1 , then $$\begin{aligned} a_\lambda (n) \in&\{-5,9,\pm 11,25, \pm 41, \pm 43, -45,\pm 47,49, \pm 53,55, \pm 59, \pm 61,\\&\pm 67, -69,\pm 71,\pm 73,75, \pm 79,\pm 81, \pm 83, \pm 89,\pm 93 \pm 97, 99\}. \end{aligned}$$ a λ ( n ) { - 5 , 9 , ± 11 , 25 , ± 41 , ± 43 , - 45 , ± 47 , 49 , ± 53 , 55 , ± 59 , ± 61 , ± 67 , - 69 , ± 71 , ± 73 , 75 , ± 79 , ± 81 , ± 83 , ± 89 , ± 93 ± 97 , 99 } . Assuming the Generalized Riemann Hypothesis, we can rule out a few more possibilities leaving $$\begin{aligned} a_\lambda (n) \in \{-5,9,\pm 11,25,-45,49,55,-69,75,\pm 81,\pm 93, 99\}. \end{aligned}$$ a λ ( n ) { - 5 , 9 , ± 11 , 25 , - 45 , 49 , 55 , - 69 , 75 , ± 81 , ± 93 , 99 } .

Funder

Directorate for Mathematical and Physical Sciences

Templeton World Charity Foundation

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

Reference23 articles.

1. Abouzaid, M.: Les nombres de Lucas et Lehmer sans diviseur primitif. J. Théor. Nombres Bordeaux 18, 299–313 (2006)

2. Ahlgren, S., Ono, K., Penniston, D.: Zeta functions of an infinite family of $$K3$$ surfaces. Am. J. Math. 124(2), 353–368 (2002)

3. Balakrishnan, J. S., Craig, W., Ono, K.,. Tsai, W.-L: Variants of Lehmer’s speculation for newforms. J. Number Theory (special issue—new developments in the theory of modular forms over function fields) (to appear)

4. Balakrishnan, J. S., Craig, W., Ono, K.: Sage code. https://github.com/jbalakrishnan/Lehmer

5. Balakrishnan, J. S., Craig, W., Ono, K.: Variations of Lehmer’s Conjecture for Ramanujan’s tau-function, J. Number Theory (JNT Prime and Special Issue on Modular forms and Function Fields): (arXiv: https://arxiv.org/abs/2005.10345)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variants of Lehmer's speculation for newforms;Advances in Mathematics;2023-09

2. A short note on inadmissible coefficients of weight 2 and $$2k+1$$ newforms;Annales mathématiques du Québec;2021-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3