Abstract
AbstractInspired by Lehmer’s conjecture on the non-vanishing of the Ramanujan $$\tau $$
τ
-function, one may ask whether an odd integer $$\alpha $$
α
can be equal to $$\tau (n)$$
τ
(
n
)
or any coefficient of a newform f(z). Balakrishnan, Craig, Ono and Tsai used the theory of Lucas sequences and Diophantine analysis to characterize non-admissible values of newforms of even weight $$k\ge 4$$
k
≥
4
. We use these methods for weight 2 and 3 newforms and apply our results to L-functions of modular elliptic curves and certain K3 surfaces with Picard number $$\ge 19$$
≥
19
. In particular, for the complete list of weight 3 newforms $$f_\lambda (z)=\sum a_\lambda (n)q^n$$
f
λ
(
z
)
=
∑
a
λ
(
n
)
q
n
that are $$\eta $$
η
-products, and for $$N_\lambda $$
N
λ
the conductor of some elliptic curve $$E_\lambda $$
E
λ
, we show that if $$|a_\lambda (n)|<100$$
|
a
λ
(
n
)
|
<
100
is odd with $$n>1$$
n
>
1
and $$(n,2N_\lambda )=1$$
(
n
,
2
N
λ
)
=
1
, then $$\begin{aligned} a_\lambda (n) \in&\{-5,9,\pm 11,25, \pm 41, \pm 43, -45,\pm 47,49, \pm 53,55, \pm 59, \pm 61,\\&\pm 67, -69,\pm 71,\pm 73,75, \pm 79,\pm 81, \pm 83, \pm 89,\pm 93 \pm 97, 99\}. \end{aligned}$$
a
λ
(
n
)
∈
{
-
5
,
9
,
±
11
,
25
,
±
41
,
±
43
,
-
45
,
±
47
,
49
,
±
53
,
55
,
±
59
,
±
61
,
±
67
,
-
69
,
±
71
,
±
73
,
75
,
±
79
,
±
81
,
±
83
,
±
89
,
±
93
±
97
,
99
}
.
Assuming the Generalized Riemann Hypothesis, we can rule out a few more possibilities leaving $$\begin{aligned} a_\lambda (n) \in \{-5,9,\pm 11,25,-45,49,55,-69,75,\pm 81,\pm 93, 99\}. \end{aligned}$$
a
λ
(
n
)
∈
{
-
5
,
9
,
±
11
,
25
,
-
45
,
49
,
55
,
-
69
,
75
,
±
81
,
±
93
,
99
}
.
Funder
Directorate for Mathematical and Physical Sciences
Templeton World Charity Foundation
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference23 articles.
1. Abouzaid, M.: Les nombres de Lucas et Lehmer sans diviseur primitif. J. Théor. Nombres Bordeaux 18, 299–313 (2006)
2. Ahlgren, S., Ono, K., Penniston, D.: Zeta functions of an infinite family of $$K3$$ surfaces. Am. J. Math. 124(2), 353–368 (2002)
3. Balakrishnan, J. S., Craig, W., Ono, K.,. Tsai, W.-L: Variants of Lehmer’s speculation for newforms. J. Number Theory (special issue—new developments in the theory of modular forms over function fields) (to appear)
4. Balakrishnan, J. S., Craig, W., Ono, K.: Sage code. https://github.com/jbalakrishnan/Lehmer
5. Balakrishnan, J. S., Craig, W., Ono, K.: Variations of Lehmer’s Conjecture for Ramanujan’s tau-function, J. Number Theory (JNT Prime and Special Issue on Modular forms and Function Fields): (arXiv: https://arxiv.org/abs/2005.10345)