Author:
Amir Malik,Hatziiliou Andreas
Abstract
AbstractLet $$f(z)=q+\sum _{n\ge 2}a(n)q^n$$
f
(
z
)
=
q
+
∑
n
≥
2
a
(
n
)
q
n
be a weight k normalized newform with integer coefficients and trivial residual mod 2 Galois representation. We extend the results of Amir and Hong in Amir and Hong (On L-functions of modular elliptic curves and certain K3 surfaces, Ramanujan J, 2021) for $$k=2$$
k
=
2
by ruling out or locating all odd prime values $$|\ell |<100$$
|
ℓ
|
<
100
of their Fourier coefficients a(n) when n satisfies some congruences. We also study the case of odd weights $$k\ge 1$$
k
≥
1
newforms where the nebentypus is given by a quadratic Dirichlet character.
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. M. Abouzaid, Les nombres de Lucas et Lehmer sans diviseur primitif, J. Théor. Nombres Bordeaux 18, 299-313 (2006).
2. Malik Amir and Letong Hong, On L-functions of modular elliptic curves and certain K3 surfaces, https://doi.org/10.1007/s11139-021-00388-w, Ramanujan J. (2021).
3. J. S. Balakrishnan, W. Craig, and K. Ono, Variations of Lehmer’s Conjecture for Ramanujan’s tau-function, ISSN 0022-314X, J Number Theory (2020).
4. J. S. Balakrishnan, W. Craig, K. Ono, and W.-L. Tsai, Variants of Lehmer’s speculation for newforms, arXiv:2005.10354 [math.NT] (2020).
5. J. S. Balakrishnan, W. Craig, and K. Ono, Sage code, https://github.com/jbalakrishnan/Lehmer.