Abstract
AbstractWe describe a computationally efficient approach to resolving equations of the form $$C_1x^2 + C_2 = y^n$$
C
1
x
2
+
C
2
=
y
n
in coprime integers, for fixed values of $$C_1$$
C
1
, $$C_2$$
C
2
subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference21 articles.
1. Abu Muriefah, F.S., Luca, F., Siksek, S., Tengely, S.: On the Diophantine equation $$x^2 + C = 2y^n$$. Int. J. Number Theory 5(6), 1117–1128 (2009)
2. Bennett, M.A., Skinner, C.M.: Ternary Diophantine equations via Galois representations and modular forms. Can. J. Math. 56(1), 23–54 (2004)
3. Bérczes, A., Pink, I.: On generalized Lebesgue–Ramanujan–Nagell equations. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22, 51–71 (2014)
4. Bilu, Yu., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539, 75–122 (2001)
5. Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations II. Compos. Math. 142, 31–62 (2006)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献