Deep Reinforcement Learning with Heuristic Corrections for UGV Navigation

Author:

Wei Changyun,Li Yajun,Ouyang Yongping,Ji ZeORCID

Abstract

AbstractMapless navigation for mobile Unmanned Ground Vehicles (UGVs) using Deep Reinforcement Learning (DRL) has attracted significantly rising attention in robotic and related research communities. Collision avoidance from dynamic obstacles in unstructured environments, such as pedestrians and other vehicles, is one of the key challenges for mapless navigation. This paper proposes a DRL algorithm based on heuristic correction learning for autonomous navigation of a UGV in mapless configuration. We use a 24-dimensional lidar sensor, and merge the target position information and the speed information of the UGV as the input of the reinforcement learning agent. The actions of the UGV are produced as the output of the agent. Our proposed algorithm has been trained and evaluated in both static and dynamic environments. The experimental result shows that our proposed algorithm can reach the target in less time with shorter distances under the premise of ensuring safety than other algorithms. Especially, the success rate of our proposed algorithm is 2.05 times higher than the second effective algorithm and the trajectory efficiency is improved by $$24\%$$ 24 % in the dynamic environment. Finally, our proposed algorithm is deployed on a real robot in the real-world environment to validate and evaluate the algorithm performance. Experimental results show that our proposed algorithm can be directly applied to real robots robustly.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3