Abstract
AbstractMobile robot localization is an important task in navigation and can be challenging, especially in non-static environments as the scene naturally involves movable objects and appearance changes. In this paper, we address the problem of estimating the robot’s pose in non-static environments containing movable objects. We understand as non-static environments, dynamic environments in which objects might be moved or changed their appearance. We propose a probabilistic localization approach that combines metric and semantic information and takes into account both, static and movable objects. We perform a pixel-wise association of depth and semantic data from an RGB-D sensor with a semantically-augmented truncated signed distance field (TSDF) in order to estimate the robot’s pose. The combination of metric and semantic information increases the robustness w.r.t. movable objects and object appearance changes. The experiments conducted in a real indoor environment and a publicly-available dataset suggest that our approach successfully estimates robot pose in non-static environments and they show an improvement compared to robot localization based only on metric or semantic information and compared to a feature-based method.
Funder
Horizon 2020 Research and Innovation Programme
Ministerio de Economia y Competitividad
Madrid Robotics Digital Innovation Hub
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stereo-RIVO: Stereo-Robust Indirect Visual Odometry;Journal of Intelligent & Robotic Systems;2024-07-09