Secure and Efficient Transmission of Vision-Based Feedback Control Signals

Author:

Volden ØysteinORCID,Solnør PetterORCID,Petrovic SlobodanORCID,Fossen Thor I.ORCID

Abstract

AbstractAn ever-increasing number of autonomous vehicles use bandwidth-greedy sensors such as cameras and LiDARs to sense and act to the world around us. Unfortunately, signal transmission in vehicles is vulnerable to passive and active cyber-physical attacks that may result in loss of intellectual property, or worse yet, the loss of control of a vehicle, potentially causing great harm. Therefore, it is important to investigate efficient cryptographic methods to secure signal transmission in such vehicles against outside threats. This study is motivated by the observation that previous publications have suggested legacy algorithms, which are either inefficient or insecure for vision-based signals. We show how stream ciphers and authenticated encryption can be applied to transfer sensor data securely and efficiently between computing devices suitable for distributed guidance, navigation, and control systems. We provide an efficient and flexible pipeline of cryptographic operations on image and point cloud data in the Robot Operating System (ROS). We also demonstrate how image data can be compressed to reduce the amount of data to be encrypted, transmitted, and decrypted. Experiments on embedded computers verify that modern software cryptographic algorithms perform very well on large sensor data. Hence, the introduction of such algorithms should enhance security without significantly compromising the overall performance.

Funder

Senter for Autonome Marine Operasjoner og Systemer

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3