A Reinforcement Learning Approach for Continuum Robot Control

Author:

Kargin Turhan Can,Kołota JakubORCID

Abstract

AbstractRigid joint manipulators are limited in their movement and degrees of freedom (DOF), while continuum robots possess a continuous backbone that allows for free movement and multiple DOF. Continuum robots move by bending over a section, taking inspiration from biological manipulators such as tentacles and trunks. This paper presents an implementation of a forward kinematics and velocity kinematics model to describe the planar continuum robot, along with the application of reinforcement learning (RL) as a control algorithm. In this paper, we have adopted the planar constant curvature representation for the forward kinematic modeling. This choice was made due to its straightforward implementation and its potential to fill the literature gap in the field RL-based control for planar continuum robots. The intended control mechanism is achieved through the use of Deep Deterministic Policy Gradient (DDPG), a RL algorithm that is suited for learning controls in continuous action spaces. After simulating the algorithm, it was observed that the planar continuum robot can autonomously move from any initial point to any desired goal point within the task space of the robot. By analyzing the results, we wanted to recommend a future direction for research in the field of continuum robot control, specifically in the application of RL algorithms. One potential area of focus could be the integration of sensory feedback, such as vision or force sensing, to improve the robot’s ability to navigate complex environments. Additionally, exploring the use of different RL algorithms, such as Proximal Policy Optimization (PPO) or Trust Region Policy Optimization (TRPO), could lead to further advancements in the field. Overall, this paper demonstrates the potential for RL-based control of continuum robots and highlights the importance of continued research in this area.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3