Innovative Exploration of a Bio-Inspired Sensor Fusion Algorithm: Enhancing Micro Satellite Functionality through Touretsky's Decentralized Neural Networks

Author:

Hassani. N S. M. Mehdi.ORCID,Roshanian Jafar

Abstract

AbstractInsect-inspired sensor fusion algorithms have presented a promising avenue in the development of robust and efficient systems, owing to the insects' ability to process numerous streams of noisy sensory data. The ring attractor neural network architecture has been identified as a noteworthy model for the optimal integration of diverse insect sensors. Expanding on this, our research presents an innovative bio-inspired ring attractor neural network architecture designed to augment the performance of microsatellite attitude determination systems through the fusion of data from multiple gyroscopic sensors.Extensive simulations using a nonlinear model of the microsatellite, while incorporating specific navigational disturbances, have been conducted to ascertain the viability and effectiveness of this approach. The results obtained have been superior to those of alternative methodologies, thus highlighting the potential of our proposed bio-inspired fusion technique. The findings indicate that this approach could significantly improve the accuracy and robustness of microsatellite systems across a wide range of applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3