Classification-Aided SAR and AIS Data Fusion for Space-Based Maritime Surveillance

Author:

Rodger MaximilianORCID,Guida Raffaella

Abstract

A wide range of research activities exploit spaceborne Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) for applications that contribute to maritime safety and security. An important requirement of SAR and AIS data fusion is accurate data association (or correlation), which is the process of linking SAR ship detections and AIS observations considered to be of a common origin. The data association is particularly difficult in dense shipping environments, where ships detected in SAR imagery can be wrongly associated with AIS observations. This often results in an erroneous and/or inaccurate maritime picture. Therefore, a classification-aided data association technique is proposed which uses a transfer learning method to classify ship types in SAR imagery. Specifically, a ship classification model is first trained on AIS data and then transferred to make predictions on SAR ship detections. These predictions are subsequently used in the data association which uses a rank-ordered assignment technique to provide a robust match between the data. Two case studies in the UK are used to evaluate the performance of the classification-aided data association technique based on the types of SAR product used for maritime surveillance: wide-area and large-scale data association in the English Channel and focused data association in the Solent. Results show a high level of correspondence between the data that is robust to dense shipping or high traffic, and the confidence in the data association is improved when using class (i.e., ship type) information.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3