Multi-Robot Patrolling with Sensing Idleness and Data Delay Objectives

Author:

Scherer Jürgen,Rinner Bernhard

Abstract

AbstractMulti-robot patrolling represents a fundamental problem for many monitoring and surveillance applications and has gained significant interest in recent years. In patrolling, mobile robots repeatedly travel through an environment, capture sensor data at certain sensing locations and deliver this data to the base station in a way that maximizes the changes of detection. Robots move on tours, exchange data when they meet with robots on neighboring tours and so eventually deliver data to the base station. In this paper we jointly consider two important optimization criteria of multi-robot patrolling: (i) idleness, i.e. the time between consecutive visits of sensing locations, and (ii) delay, i.e. the time between capturing data at the sensing location and its arrival at the base station. We systematically investigate the effect of the robots’ moving directions along their tours and the selection of meeting points for data exchange. We prove that the problem of determining the movement directions and meeting points such that the data delay is minimized is NP-hard. For this purpose, we define a structure called tour graph which models the neighborhood of the tours defined by potential meeting points. We propose two heuristics that are based on a shortest-path-search in the tour graph. We provide a simulation study which shows that the cooperative approach can outperform an uncooperative approach where every robot delivers the captured data individually to the base station. Additionally, the experiments show that the heuristic which is computational more expensive performs slightly better on average than the less expensive heuristic in the considered scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Patrolling Heterogeneous Targets with FANETs;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS);2024-05-20

2. Hierarchical Area-Based and Path-Based Heuristic Approaches for Multirobot Coverage Path Planning with Performance Analysis in Surveillance Systems;Sensors;2023-10-17

3. A Study on Performance Comparison of Combination of Genetic Algorithm and Ant Colony Optimization for Multi-robot Coverage Path Planning;The Journal of Korean Institute of Information Technology;2023-06-30

4. A General Framework for Multi-UAV Communication Connectivity Maintenance Through Scalable Task Allocation;2023 International Conference on Unmanned Aircraft Systems (ICUAS);2023-06-06

5. Multirobot Cooperative Patrolling Strategy for Moving Objects;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3