Quadrotor Path Following and Reactive Obstacle Avoidance with Deep Reinforcement Learning

Author:

Rubí BartomeuORCID,Morcego Bernardo,Pérez Ramon

Abstract

AbstractA deep reinforcement learning approach for solving the quadrotor path following and obstacle avoidance problem is proposed in this paper. The problem is solved with two agents: one for the path following task and another one for the obstacle avoidance task. A novel structure is proposed, where the action computed by the obstacle avoidance agent becomes the state of the path following agent. Compared to traditional deep reinforcement learning approaches, the proposed method allows to interpret the training process outcomes, is faster and can be safely trained on the real quadrotor. Both agents implement the Deep Deterministic Policy Gradient algorithm. The path following agent was developed in a previous work. The obstacle avoidance agent uses the information provided by a low-cost LIDAR to detect obstacles around the vehicle. Since LIDAR has a narrow field-of-view, an approach for providing the agent with a memory of the previously seen obstacles is developed. A detailed description of the process of defining the state vector, the reward function and the action of this agent is given. The agents are programmed in python/tensorflow and are trained and tested in the RotorS/gazebo platform. Simulations results prove the validity of the proposed approach.

Funder

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3