Adaptive Optimization of Hyper-Parameters for Robotic Manipulation through Evolutionary Reinforcement Learning

Author:

Onori Giulio,Shahid Asad Ali,Braghin Francesco,Roveda LorisORCID

Abstract

AbstractDeep Reinforcement Learning applications are growing due to their capability of teaching the agent any task autonomously and generalizing the learning. However, this comes at the cost of a large number of samples and interactions with the environment. Moreover, the robustness of learned policies is usually achieved by a tedious tuning of hyper-parameters and reward functions. In order to address this issue, this paper proposes an evolutionary RL algorithm for the adaptive optimization of hyper-parameters. The policy is trained using an on-policy algorithm, Proximal Policy Optimization (PPO), coupled with an evolutionary algorithm. The achieved results demonstrate an improvement in the sample efficiency of the RL training on a robotic grasping task. In particular, the learning is improved with respect to the baseline case of a non-evolutionary agent. The evolutionary agent needs $$60$$ 60 % fewer samples to completely learn the grasping task, enabled by the adaptive transfer of knowledge between the agents through the evolutionary algorithm. The proposed approach also demonstrates the possibility of updating reward parameters during training, potentially providing a general approach to creating reward functions.

Funder

Hasler Stiftung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3