Communication-Aware Control of Large Data Transmissions via Centralized Cognition and 5G Networks for Multi-Robot Map merging

Author:

Damigos GerasimosORCID,Stathoulopoulos NikolaosORCID,Koval AntonORCID,Lindgren Tore,Nikolakopoulos GeorgeORCID

Abstract

AbstractMultiple modern robotic applications benefit from centralized cognition and processing schemes. However, modern equipped robotic platforms can output a large amount of data, which may exceed the capabilities of modern wireless communication systems if all data is transmitted without further consideration. This research presents a multi-agent, centralized, and real-time 3D point cloud map merging scheme for ceaselessly connected robotic agents. Centralized architectures enable mission awareness to all agents at all times, making tasks such as search and rescue more effective. The centralized component is placed on an edge server, ensuring low communication latency, while all agents access the server utilizing a fifth-generation (5G) network. In addition, the proposed solution introduces a communication-aware control function that regulates the transmissions of map instances to prevent the creation of significant data congestion and communication latencies as well as address conditions where the robotic agents traverse in limited to no coverage areas. The presented framework is agnostic of the used localization and mapping procedure, while it utilizes the full power of an edge server. Finally, the efficiency of the novel established framework is being experimentally validated based on multiple scenarios.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Reference46 articles.

1. Chen, S.W., Nardari, G.V., Lee, E.S., Qu, C., Liu, X., Romero, R.A.F., Kumar, V.: SLOAM: Semantic Lidar Odometry and Mapping for Forest Inventory. IEEE Robot. Autom. Lett. 5(2), 612–619 (2020). https://doi.org/10.1109/LRA.2019.2963823

2. Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, D., Morris, A., Omohundro, Z., Reverte, C.: Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 11(4), 79–91 (2004). https://doi.org/10.1109/MRA.2004.1371614

3. Jenssen, R., Roverso, D., et al.: Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. Int J. Electr. Power Energy Syst. 99, 107–120 (2018)

4. Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S., Kneip, L., Gurdan, D., Heng, L., Lee, G.H., Lynen, S., Pollefeys, M., Renzaglia, A., Siegwart, R., Stumpf, J.C., Tanskanen, P., Troiani, C., Weiss, S., Meier, L.: Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments. IEEE Robot. Autom. Mag. 21(3), 26–40 (2014)

5. Lindqvist, B., Kanellakis, C., Mansouri, S.S., Agha-mohammadi, A.-A., Nikolakopoulos, G.: COMPRA: A COMPact Reactive Autonomy Framework for Subterranean MAV Based Search-And-Rescue Operations. J. Intell. Robot. Syst. 105(3), 49 (2022). https://doi.org/10.1007/s10846-022-01665-6

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3