Urban Firefighting Drones: Precise Throwing from UAV

Author:

Perez-Saura DavidORCID,Fernandez-Cortizas MiguelORCID,Perez-Segui RafaelORCID,Arias-Perez PedroORCID,Campoy PascualORCID

Abstract

AbstractIn recent years, the use of unmanned aerial vehicles has spread across different fields of the industry due to their ease of deployment and minimal operational risk. Firefighting is a dangerous task for the humans involved, in which the use of UAVs presents itself as a good first-action protocol for a rapid response to an incipient fire because of their safety and speed of action. Current research is mainly focused on wildland fires, but fires in urban environments are barely mentioned in the bibliography. To motivate the research on this topic, ICUAS’22 organized an international competition inspired by this mission, with the challenge of a UAV traversing an area populated by obstacles, finding a target, and precisely throwing a ball to it. For this competition, the Computer Vision and Aerial Robotics (CVAR-UPM) team developed a solution composed of multiple modules and structured by a mission planner. In this paper, we describe our approach and the developed architecture that led us to be awarded the first prize in the competition.

Funder

Centro de Automática y Robótica

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3