Improving the spatiotemporal resolution of remotely sensed ET information for water management through Landsat, Sentinel-2, ECOSTRESS and VIIRS data fusion

Author:

Xue JieORCID,Anderson Martha C.,Gao Feng,Hain Christopher,Knipper Kyle R.,Yang Yun,Kustas William P.,Yang Yang,Bambach Nicolas,McElrone Andrew J.,Castro Sebastian J.,Alfieri Joseph G.,Prueger John H.,McKee Lynn G.,Hipps Lawrence E.,del Mar Alsina María

Abstract

AbstractRobust information on consumptive water use (evapotranspiration, ET) derived from remote sensing can significantly benefit water decision-making in agriculture, informing irrigation schedules and water management plans over extended regions. To be of optimal utility for operational usage, these remote sensing ET data should be generated at the sub-field spatial resolution and daily-to-weekly timesteps commensurate with the scales of water management activities. However, current methods for field-scale ET retrieval based on thermal infrared (TIR) imaging, a valuable diagnostic of canopy stress and surface moisture status, are limited by the temporal revisit of available medium-resolution (100 m or finer) thermal satellite sensors. This study investigates the efficacy of a data fusion method for combining information from multiple medium-resolution sensors toward generating high spatiotemporal resolution ET products for water management. TIR data from Landsat and ECOSTRESS (both at ~ 100-m native resolution), and VIIRS (375-m native) are sharpened to a common 30-m grid using surface reflectance data from the Harmonized Landsat-Sentinel dataset. Periodic 30-m ET retrievals from these combined thermal data sources are fused with daily retrievals from unsharpened VIIRS to generate daily, 30-m ET image timeseries. The accuracy of this mapping method is tested over several irrigated cropping systems in the Central Valley of California in comparison with flux tower observations, including measurements over irrigated vineyards collected in the GRAPEX campaign. Results demonstrate the operational value added by the augmented TIR sensor suite compared to Landsat alone, in terms of capturing daily ET variability and reduced latency for real-time applications. The method also provides means for incorporating new sources of imaging from future planned thermal missions, further improving our ability to map rapid changes in crop water use at field scales.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Water Science and Technology,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3