Effect of the revisit interval and temporal upscaling methods on the accuracy of remotely sensed evapotranspiration estimates

Author:

Alfieri Joseph G.,Anderson Martha C.ORCID,Kustas William P.,Cammalleri Carmelo

Abstract

Abstract. Accurate spatially distributed estimates of actual evapotranspiration (ET) derived from remotely sensed data are critical to a broad range of practical and operational applications. However, due to lengthy return intervals and cloud cover, data acquisition is not continuous over time, particularly for satellite sensors operating at medium ( ∼  100 m) or finer resolutions. To fill the data gaps between clear-sky data acquisitions, interpolation methods that take advantage of the relationship between ET and other environmental properties that can be continuously monitored are often used. This study sought to evaluate the accuracy of this approach, which is commonly referred to as temporal upscaling, as a function of satellite revisit interval. Using data collected at 20 Ameriflux sites distributed throughout the contiguous United States and representing four distinct land cover types (cropland, grassland, forest, and open-canopy) as a proxy for perfect retrievals on satellite overpass dates, this study assesses daily ET estimates derived using five different reference quantities (incident solar radiation, net radiation, available energy, reference ET, and equilibrium latent heat flux) and three different interpolation methods (linear, cubic spline, and Hermite spline). Not only did the analyses find that the temporal autocorrelation, i.e., persistence, of all of the reference quantities was short, it also found that those land cover types with the greatest ET exhibited the least persistence. This carries over to the error associated with both the various scaled quantities and flux estimates. In terms of both the root mean square error (RMSE) and mean absolute error (MAE), the errors increased rapidly with increasing return interval following a logarithmic relationship. Again, those land cover types with the greatest ET showed the largest errors. Moreover, using a threshold of 20 % relative error, this study indicates that a return interval of no more than 5 days is necessary for accurate daily ET estimates. It also found that the spline interpolation methods performed erratically for long return intervals and should be avoided.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3