Vine water status mapping with multispectral UAV imagery and machine learning

Author:

Tang ZhehanORCID,Jin Yufang,Alsina Maria Mar,McElrone Andrew J.,Bambach Nicolas,Kustas William P.

Abstract

AbstractOptimizing water management has become one of the biggest challenges for grapevine growers in California, especially during drought conditions. Monitoring grapevine water status and stress level across the whole vineyard is an essential step for precision irrigation management of vineyards to conserve water. We developed a unified machine learning model to map leaf water potential ($${\psi }_{\mathrm{leaf}}$$ψleaf), by combining high-resolution multispectral remote sensing imagery and weather data. We conducted six unmanned aerial vehicle (UAV) flights with a five-band multispectral camera from 2018 to 2020 over three commercial vineyards, concurrently with ground measurements of sampled vines. Using vegetation indices from the orthomosaiced UAV imagery and weather data as predictors, the random forest (RF) full model captured 77% of$${\psi }_{\mathrm{leaf}}$$ψleafvariance, with a root mean square error (RMSE) of 0.123 MPa, and a mean absolute error (MAE) of 0.100 MPa, based on the validation datasets. Air temperature, vapor pressure deficit, and red edge indices such as the normalized difference red edge index (NDRE) were found as the most important variables in estimating$${\psi }_{\mathrm{leaf}}$$ψleafacross space and time. The reduced RF models excluding weather and red edge indices explained 52–48% of$${\psi }_{\mathrm{leaf}}$$ψleafvariance, respectively. Maps of the estimated$${\psi }_{\mathrm{leaf}}$$ψleaffrom the RF full model captured well the patterns of both within- and cross-field spatial variability and the temporal change of vine water status, consistent with irrigation management and patterns observed from the ground sampling. Our results demonstrated the utility of UAV-based aerial multispectral imaging for supplementing and scaling up the traditional point-based ground sampling of$${\psi }_{\mathrm{leaf}}$$ψleaf. The pre-trained machine learning model, driven by UAV imagery and weather data, provides a cost-effective and scalable tool to facilitate data-driven precision irrigation management at individual vine levels in vineyards.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Water Science and Technology,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3