Assessing grapevine water status in a variably irrigated vineyard with NIR/SWIR hyperspectral imaging from UAV

Author:

Laroche-Pinel E.ORCID,Vasquez K. R.,Brillante L.ORCID

Abstract

AbstractRemote sensing is now a valued solution for more accurately budgeting water supply by identifying spectral and spatial information. A study was put in place in a Vitis vinifera L. cv. Cabernet-Sauvignon vineyard in the San Joaquin Valley, CA, USA, where a variable rate automated irrigation system was installed to irrigate vines with twelve different water regimes in four randomized replicates, totaling 48 experimental zones. The purpose of this experimental design was to create variability in grapevine water status, in order to produce a robust dataset for modeling purposes. Throughout the growing season, spectral data within these zones was gathered using a Near InfraRed (NIR) - Short Wavelength Infrared (SWIR) hyperspectral camera (900 to 1700 nm) mounted on an Unmanned Aircraft Vehicle (UAV). Given the high water-absorption in this spectral domain, this sensor was deployed to assess grapevine stem water potential, Ψstem, a standard reference for water status assessment in plants, from pure grapevine pixels in hyperspectral images. The Ψstem was acquired simultaneously in the field from bunch closure to harvest and modeled via machine-learning methods using the remotely sensed NIR-SWIR data as predictors in regression and classification modes (classes consisted of physiologically different water stress levels). Hyperspectral images were converted to bottom of atmosphere reflectance using standard panels on the ground and through the Quick Atmospheric Correction Method (QUAC) and the results were compared. The best models used data obtained with standard panels on the ground and allowed predicting Ψstem values with an R2 of 0.54 and an RMSE of 0.11 MPa as estimated in cross-validation, and the best classification reached an accuracy of 74%. This project aims to develop new methods for precisely monitoring and managing irrigation in vineyards while providing useful information about plant physiology response to deficit irrigation.

Funder

American Vineyard Foundation

Agricultural Research Institute, California State University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3