Abstract
AbstractProgrammed cell death is considered a key player in a variety of cellular processes that helps to regulate tissue growth, embryogenesis, cell turnover, immune response, and other biological processes. Among different types of cell death, apoptosis has been studied widely, especially in the field of cancer research to understand and analyse cellular mechanisms, and signaling pathways that control cell cycle arrest. Hallmarks of different types of cell death have been identified by following the patterns and events through microscopy. Identified biomarkers have also supported drug development to induce cell death in cancerous cells. There are various serological and microscopic techniques with advantages and limitations, that are available and are being utilized to detect and study the mechanism of cell death. The complexity of the mechanism and difficulties in distinguishing among different types of programmed cell death make it challenging to carry out the interventions and delay its progression. In this review, mechanisms of different forms of programmed cell death along with their conventional and unconventional methods of detection of have been critically reviewed systematically and categorized on the basis of morphological hallmarks and biomarkers to understand the principle, mechanism, application, advantages and disadvantages of each method. Furthermore, a very comprehensive comparative analysis has been drawn to highlight the most efficient and effective methods of detection of programmed cell death, helping researchers to make a reliable and prudent selection among the available methods of cell death assay. Conclusively, how programmed cell death detection methods can be improved and can provide information about distinctive stages of cell death detection have been discussed.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Biochemistry (medical),Cell Biology,Clinical Biochemistry,Pharmaceutical Science,Pharmacology
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献