Role of legs and foot adhesion in salticid spiders jumping from smooth surfaces

Author:

Goetzke Hanns HagenORCID,Federle WalterORCID

Abstract

AbstractMany spiders and insects can perform rapid jumps from smooth plant surfaces. Here, we investigate how jumping spiders (Pseudeuophrys lanigeraandSitticus pubescens) avoid slipping when accelerating. Both species differed in the relative contribution of leg pairs to the jump.P. lanigeraaccelerated mainly with their long third legs, whereas their short fourth legs detached earlier. In contrast,S. pubescensaccelerated mainly with their long fourth legs, and their short third legs detached earlier. Because of the different orientation (fourth-leg tip pointing backward, third-leg tip pointing forward), the fourth-leg tarsus pushed, whereas the third-leg tarsus pulled. High-speed video recordings showed that pushing and pulling was achieved by different attachment structures. InP. lanigera, third-leg feet made surface contact with setae on their distal or lateral claw tuft, whereas fourth-leg feet engaged the proximal claw tuft, and the distal tuft was raised off the ground.S. pubescensshowed the same division of labour between proximal and distal claw tuft for pushing and pulling, but the claw tuft contact lasted longer and was more visible in the fourth than in the third legs. Experimental ablation of claw tufts caused accelerating spiders to slip, confirming that adhesion is essential for jumps from smooth substrates.

Funder

Biotechnology and Biological Sciences Research Council

Gates Cambridge Trust

Cambridge Philosophical Society

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Animal Science and Zoology,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3