Gripping performance in the stick insect Sungaya inexpectata in dependence on the pretarsal architecture

Author:

Winand Julian,Gorb Stanislav N.,Büscher Thies H.

Abstract

Abstract Insect attachment devices and capabilities have been subject to research efforts for decades, and even though during that time considerable progress has been made, numerous questions remain. Different types of attachment devices are known, alongside most of their working principles, however, some details have yet to be understood. For instance, it is not clear why insects for the most part developed pairs of claws, instead of either three or a single one. In this paper, we investigated the gripping forces generated by the stick insect Sungaya inexpectata, in dependence on the number of available claws. The gripping force experiments were carried out on multiple, standardized substrates of known roughness, and conducted in directions both perpendicular and parallel to the substrate. This was repeated two times: first with a single claw being amputated from each of the animals’ legs, then with both claws removed, prior to the measurement. The adhesive pads (arolia) and frictional pads (euplantulae) remained intact. It was discovered that the removal of claws had a detractive effect on the gripping forces in both directions, and on all substrates. Notably, this also included the control of smooth surfaces on which the claws were unable to find any asperities to grip on. The results show that there is a direct connection between the adhesive performance of the distal adhesive pad (arolium) and the presence of intact claws. These observations show collective effects between different attachment devices that work in concert during locomotion, and grant insight into why most insects possess two claws.

Funder

DFG Special Priority Programme SPP 2100 'Soft Material Robotic Systems'

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Animal Science and Zoology,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3