Advanced diffusion MRI provides evidence for altered axonal microstructure and gradual peritumoral infiltration in GBM in comparison to brain metastases

Author:

Würtemberger U.ORCID,Rau A.,Diebold M.,Becker L.,Hohenhaus M.,Beck J.,Reinacher P. C.,Erny D.,Reisert M.,Urbach H.,Demerath T.

Abstract

Abstract Purpose In contrast to peritumoral edema in metastases, GBM is histopathologically characterized by infiltrating tumor cells within the T2 signal alterations. We hypothesized that depending on the distance from the outline of the contrast-enhancing tumor we might reveal imaging evidence of gradual peritumoral infiltration in GBM and predominantly vasogenic edema around metastases. We thus investigated the gradual change of advanced diffusion metrics with the peritumoral zone in metastases and GBM. Methods In 30 patients with GBM and 28 with brain metastases, peritumoral T2 hyperintensity was segmented in 33% partitions based on the total volume beginning at the enhancing tumor margin and divided into inner, middle and outer zones. Diffusion Tensor Imaging (DTI)-derived fractional anisotropy and mean diffusivity as well as Diffusion Microstructure Imaging (DMI)-based parameters Dax-intra, Dax-extra, V‑CSF and V-intra were employed to assess group-wise differences between inner and outer zones as well as within-group gradients between the inner and outer zones. Results In metastases, fractional anisotropy and Dax-extra were significantly reduced in the inner zone compared to the outer zone (FA p = 0.01; Dax-extra p = 0.03). In GBM, we noted a reduced Dax-extra and significantly lower intraaxonal volume fraction (Dax-extra p = 0.008, V‑intra p = 0.006) accompanied by elevated axial intraaxonal diffusivity in the inner zone (p = 0.035). Between-group comparison of the outer to the inner zones revealed significantly higher gradients in metastases over GBM for FA (p = 0.04) as well as the axial diffusivity in the intra- (p = 0.02) and extraaxonal compartment (p < 0.001). Conclusion Our findings provide evidence of gradual alterations within the peritumoral zone of brain tumors. These are compatible with predominant (vasogenic) edema formation in metastases, whereas our findings in GBM are in line with an axonal destructive component in the immediate peritumoral area and evidence of tumor cell infiltration with accentuation in the tumor’s vicinity.

Funder

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3