Funder
European Regional Development Fund
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference47 articles.
1. Ackerman, M., & Dasgupta, S. (2014). Incremental clustering: The case for extra clusters. In Advances in Neural Information Processing Systems (pp. 307–315).
2. Aggarwal, C. C. (2007). Data streams: Models and algorithms (Vol. 31). New York: Springer.
3. Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In Proceedings of the 29th international conference on Very large data bases-Volume 29, VLDB Endowment (pp. 81–92).
4. Baudry, J. P., Raftery, A. E., Celeux, G., Lo, K., & Gottardo, R. (2010). Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 19(2), 332–353.
5. Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive windowing. In Proceedings of the 2007 SIAM international conference on data mining, SIAM (pp. 443–448).
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献