1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., & Mané, D. (2016). Concrete problems in AI safety. CoRR abs/1606.06565, pp. 1–29.
2. Bardenet, R., Doucet, A., & Holmes, C. C. (2017). On Markov chain Monte Carlo methods for tall data. Journal of Machine Learning Research, 18, 1–47.
3. Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3, 463–482.
4. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. Machine Learning, 79(1–2), 151–175.
5. Chen, Q., Xue, B., & Zhang, M. (2022). Rademacher complexity for enhancing the generalization of genetic programming for symbolic regression. IEEE Transactions on Cybernetics, 52(4), 2382–2395.