Unsupervised anomaly detection in multivariate time series with online evolving spiking neural networks

Author:

Bäßler Dennis,Kortus Tobias,Gühring GabrieleORCID

Abstract

AbstractWith the increasing demand for digital products, processes and services the research area of automatic detection of signal outliers in streaming data has gained a lot of attention. The range of possible applications for this kind of algorithms is versatile and ranges from the monitoring of digital machinery and predictive maintenance up to applications in analyzing big data healthcare sensor data. In this paper we present a method for detecting anomalies in streaming multivariate times series by using an adapted evolving Spiking Neural Network. As the main components of this work we contribute (1) an alternative rank-order-based learning algorithm which uses the precise times of the incoming spikes for adjusting the synaptic weights, (2) an adapted, realtime-capable and efficient encoding technique for multivariate data based on multi-dimensional Gaussian Receptive Fields and (3) a continuous outlier scoring function for an improved interpretability of the classifications. Spiking neural networks are extremely efficient when it comes to process time dependent information. We demonstrate the effectiveness of our model on a synthetic dataset based on the Numenta Anomaly Benchmark with various anomaly types. We compare our algorithm to other streaming anomaly detecting algorithms and can prove that our algorithm performs better in detecting anomalies while demanding less computational resources for processing high dimensional data.

Funder

Hochschule Esslingen

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Homeostatic Plasticity to Enable Anomaly Detection in Spiking Neural Networks;2024 IEEE International Conference on Smart Computing (SMARTCOMP);2024-06-29

2. One Model to Find Them All Deep Learning for Multivariate Time-Series Anomaly Detection in Mobile Network Data;IEEE Transactions on Network and Service Management;2024

3. Improved Random Forest Based Anomaly Detection for Urban Rail Transits;2023 IEEE 8th International Conference on Smart Cloud (SmartCloud);2023-09-16

4. A Robust Data-Driven Predictive Maintenance Framework for Industrial Machinery using Explainable Machine Learning Techniques;2023 9th International Conference on Smart Computing and Communications (ICSCC);2023-08-17

5. A Deep Spiking Neural Network Anomaly Detection Method;Computational Intelligence and Neuroscience;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3