A Deep Spiking Neural Network Anomaly Detection Method

Author:

Hu Lixia1ORCID,Liu Ya2ORCID,Qiu Wei1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Langfang Polytechnic Institute, Langfang 065000, China

2. Department of Electrical Automation, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, China

Abstract

Cyber-attacks on specialized industrial control systems are increasing in frequency and sophistication, which means stronger countermeasures need to be implemented, requiring the designers of the equipment in question to re-evaluate and redefine their methods for actively protecting against advanced mass cyber-attacks. The attacks in question have huge motivations, ranging from corporate espionage to political targets, but in any case, they have a substantial financial impact and severe real-world implications. It should also be said that it is challenging to defend against cyber threats because a single point of entry can be enough to destroy an entire organization or put it out of business. This paper examines threats to the digital security of vibration monitoring systems used in petroleum infrastructure protection services, such as pipelines, pumps, and tank farms, where malicious interventions can cause explosions, fires, or toxic releases, with incalculable economic and environmental consequences. Specifically, a deep spiking neural network anomaly detection method is presented, which models the spike sequences and the internal presentation mechanisms of the information to discover with very high accuracy anomalies in vibration analysis systems used in oil infrastructure protection services. This is achieved by simulating the complex structures of the human brain and the way neural information is processed and transmitted. This work uses a particularly innovative form of the Galves–Löcherbach Spiking Model (GLSM) [1], which is a spiking neural network model with intrinsic stochasticity, ideal for modeling complex spatiotemporal situations, which is enhanced with possibilities of exploiting confidence intervals by modeling optimally stochastic variable-length memory chains that have a finite state space.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3