$$\alpha$$ILP: thinking visual scenes as differentiable logic programs

Author:

Shindo Hikaru,Pfanschilling Viktor,Dhami Devendra Singh,Kersting Kristian

Abstract

AbstractDeep neural learning has shown remarkable performance at learning representations for visual object categorization. However, deep neural networks such as CNNs do not explicitly encode objects and relations among them. This limits their success on tasks that require a deep logical understanding of visual scenes, such as Kandinsky patterns and Bongard problems. To overcome these limitations, we introduce $$\alpha {\textit{ILP}}$$ α ILP , a novel differentiable inductive logic programming framework that learns to represent scenes as logic programs—intuitively, logical atoms correspond to objects, attributes, and relations, and clauses encode high-level scene information. $$\alpha$$ α ILP has an end-to-end reasoning architecture from visual inputs. Using it, $$\alpha$$ α ILP performs differentiable inductive logic programming on complex visual scenes, i.e., the logical rules are learned by gradient descent. Our extensive experiments on Kandinsky patterns and CLEVR-Hans benchmarks demonstrate the accuracy and efficiency of $$\alpha {\textit{ILP}}$$ α ILP in learning complex visual-logical concepts.

Funder

SPAICER

TAILOR

AICO

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference74 articles.

1. Amizadeh, S., Palangi, H., Polozov, A., Huang, Y., & Koishida, K. (2020). Neuro-symbolic visual reasoning: Disentangling visual from reasoning. Proceedings of the 37th international conference on machine learning (ICML) (Vol. 119, pp. 279–290).

2. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., & Parikh, D. (2015). Vqa: Visual question answering. In Proceedings of the IEEE international conference on computer vision (ICCV).

3. Badreddine, S., d’Avila Garcez, A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artificial Intelligence, 303, 103649.

4. Bellodi, E., & Riguzzi, F. (2015). Structure learning of probabilistic logic programs by searching the clause space. Theory and Practice of Logic Programming, 15(2), 169–212.

5. Besold, T. R., d’Avila Garcez, A. S., Bader, S., Bowman, H., Domingos, P. M., Hitzler, P., Kühnberger, K., Lamb, L. C., Lowd, D., Lima, P. M. V., de Penning, L., Pinkas, G., Poon, H., & Zaverucha, G. (2017). Neural-symbolic learning and reasoning: A survey and interpretation. In CoRRarXiv:1711.03902.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3