Feature ranking for semi-supervised learning

Author:

Petković Matej,Džeroski Sašo,Kocev DragiORCID

Abstract

AbstractThe data used for analysis are becoming increasingly complex along several directions: high dimensionality, number of examples and availability of labels for the examples. This poses a variety of challenges for the existing machine learning methods, related to analyzing datasets with a large number of examples that are described in a high-dimensional space, where not all examples have labels provided. For example, when investigating the toxicity of chemical compounds, there are many compounds available that can be described with information-rich high-dimensional representations, but not all of the compounds have information on their toxicity. To address these challenges, we propose methods for semi-supervised learning (SSL) of feature rankings. The feature rankings are learned in the context of classification and regression, as well as in the context of structured output prediction (multi-label classification, MLC, hierarchical multi-label classification, HMLC and multi-target regression, MTR) tasks. This is the first work that treats the task of feature ranking uniformly across various tasks of semi-supervised structured output prediction. To the best of our knowledge, it is also the first work on SSL of feature rankings for the tasks of HMLC and MTR. More specifically, we propose two approaches—based on predictive clustering tree ensembles and the Relief family of algorithms—and evaluate their performance across 38 benchmark datasets. The extensive evaluation reveals that rankings based on Random Forest ensembles perform the best for classification tasks (incl. MLC and HMLC tasks) and are the fastest for all tasks, while ensembles based on extremely randomized trees work best for the regression tasks. Semi-supervised feature rankings outperform their supervised counterparts across the majority of datasets for all of the different tasks, showing the benefit of using unlabeled in addition to labeled data.

Funder

Horizon 2020 Framework Programme

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference69 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3