An Efficient Anomaly Detection Method for Industrial Control Systems: Deep Convolutional Autoencoding Transformer Network

Author:

Shang Wenli12ORCID,Qiu Jiawei12ORCID,Shi Haotian12ORCID,Wang Shuang3ORCID,Ding Lei24ORCID,Xiao Yanjun5ORCID

Affiliation:

1. The School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China

2. The Key Laboratory of On-Chip Communication and Sensor Chip of Guangdong Higher Education Institutes, Guangzhou University, Guangzhou 510006, China

3. The Information Security Evaluation Center of Civil Aviation, Civil Aviation University of China, Tianjin 300300, China

4. The School of Cyber Security, Guangzhou University, Guangzhou 510006, China

5. The Parallel Laboratory, NSFOCUS Technologies Group Co., Ltd., Beijing 100089, China

Abstract

Industrial control systems (ICSs), as critical national infrastructures, are increasingly susceptible to sophisticated security threats. To address this challenge, our study introduces the CAE-T, a deep convolutional autoencoding transformer network designed for efficient anomaly detection and real-time fault monitoring in ICS. The CAE-T utilizes unsupervised deep learning, employing a convolutional autoencoder for spatial feature extraction from multidimensional time-series data, and combines this with a transformer architecture to capture long-term temporal dependencies. The design of the model facilitates rapid training and inference, while its dual-component approach, utilizing an optimization function based on support vector data description (SVDD), enhances detection accuracy. This integration synergistically combines spatiotemporal feature extraction, significantly improving the robustness and precision of anomaly detection in ICS environments. The CAE-T model demonstrated notable performance enhancements across three industrial control system datasets. Notably, the CAE-T model achieved approximately a 70.8% increase in F1 score and a 9.2% rise in AUC on the WADI dataset. On the SWaT dataset, the model showed improvements of approximately 2.8% in F1 score and 5% in AUC. The power system dataset saw more modest gains, with an approximately 0.1% uptick in F1 score and a 1% increase in AUC. These improvements validate the CAE-T model’s efficacy and robustness in anomaly detection across various scenarios.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3