Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics

Author:

Berkenkamp FelixORCID,Krause Andreas,Schoellig Angela P.

Abstract

AbstractSelecting the right tuning parameters for algorithms is a pravelent problem in machine learning that can significantly affect the performance of algorithms. Data-efficient optimization algorithms, such as Bayesian optimization, have been used to automate this process. During experiments on real-world systems such as robotic platforms these methods can evaluate unsafe parameters that lead to safety-critical system failures and can destroy the system. Recently, a safe Bayesian optimization algorithm, called SafeOpt, has been developed, which guarantees that the performance of the system never falls below a critical value; that is, safety is defined based on the performance function. However, coupling performance and safety is often not desirable in practice, since they are often opposing objectives. In this paper, we present a generalized algorithm that allows for multiple safety constraints separate from the objective. Given an initial set of safe parameters, the algorithm maximizes performance but only evaluates parameters that satisfy safety for all constraints with high probability. To this end, it carefully explores the parameter space by exploiting regularity assumptions in terms of a Gaussian process prior. Moreover, we show how context variables can be used to safely transfer knowledge to new situations and tasks. We provide a theoretical analysis and demonstrate that the proposed algorithm enables fast, automatic, and safe optimization of tuning parameters in experiments on a quadrotor vehicle.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Natural Sciences and Engineering Research Council of Canada

Connaught New Researcher Award

ETH Zurich

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference51 articles.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Optimisation for Constrained Problems;ACM Transactions on Modeling and Computer Simulation;2024-01-22

2. A Computationally Lightweight Safe Learning Algorithm;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

3. Primal-Dual Contextual Bayesian Optimization for Control System Online Optimization with Time-Average Constraints;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

4. Safe Explorative Bayesian Optimization - Towards Personalized Treatments in Plasma Medicine;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

5. Safe Zeroth-Order Optimization Using Linear Programs;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3