1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,& Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from www.tensorflow.org
2. Adiprawita, W., Ahmad, A. S., & Semibiring, J. (2008). Hardware in the loop simulator in UAV rapid development life cycle. CoRR, vol. abs/0804.3874.
3. Ahn, M., Zhu, H., Hartikainen, K., Ponte, H., Gupta, A., Levine, S., & Kumar, V. (2020). Robel: Robotics benchmarks for learning with low-cost robots. In Conference on robot learning (pp. 1300–1313). PMLR.
4. Bakker, B. (2002). Reinforcement learning with long short-term memory. Advances in Neural Information Processing Systems, 5, 1475–1482.
5. Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2015). The arcade learning environment: An evaluation platform for general agents. In Proceedings of the 24th international conference on artificial intelligence, IJCAI’15 (pp. 4148–4152). AAAI Press.