1. Alali, A., & Kubat, M. (2015). PruDent: A pruned and confident stacking approach for multi-label classification. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2480–2493. https://doi.org/10.1109/TKDE.2015.2416731.
2. Benavoli, A., Corani, G., Demsar, J., & Zaffalon, M. (2017). Time for a change: A tutorial for comparing multiple classifiers through bayesian analysis. Journal of Machine Learning Research, 18, 77:1–77:36.
3. Bernardini, F. C., Benito, E., & Meza, M. (2014). Cardinality and density measures and their influence to multi-label learning methods. Journal of the Brazilian Society on Computational Intelligence, 12(1), 53–71.
4. Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757–1771. https://doi.org/10.1016/j.patcog.2004.03.009.
5. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324.