Future range dynamics of the red alga Capreolia implexa in native and invaded regions: contrasting predictions from species distribution models versus physiological knowledge

Author:

Laeseke PhilippORCID,Martínez Brezo,Mansilla Andrés,Bischof Kai

Abstract

Abstract Correlative species distribution modelling is a widely used method to predict potential species ranges but can suffer from limitations in integrating species’ fundamental niches. Therefore, they might underestimate suitable ranges, but including physiological information can improve accuracy of predictions and help identify mechanisms of e.g. range limitation. However, approaches using both, results from correlative as well as physiological investigations are rare, especially in research on seaweeds. Here, we provide results from both approaches to predict the suitable habitat range of Capreolia implexa (Rhodophyta) in its native range (Australia and New Zealand) and invaded range (Chile) under present and future climate scenarios (year 2100, rcp 2.6 and rcp 8.5). We used the Maxent modelling technique and physiological knowledge from a temperature tolerance experiment (2–20 °C) for thermal niche estimation. Results from both approaches suggest larger suitable habitat ranges under present day conditions for both regions than currently occupied. Abiotic range limitation in the native range led to underestimation of the suitable temperature range by Maxent (here lower temperature limit = 8.3 °C). Predictions based on the laboratory temperature tolerance experiment suggest additional suitable habitat in colder regions (here lower temperature limit = 6.6 ± 0.4 °C). Under future climate conditions, both native and invaded ranges should shift southward, which will lead to an overall loss of suitable habitat in the native range. Like that, rcp 8.5 conditions should reduce the native range to 50% of the present-day extent. We demonstrate the limitation of correlative SDM modelling for species that live on continental margins and that physiological experiments can help to identify species’ niches beyond correlative analyses, providing valuable information for range projections. Furthermore, we provide valuable insights relevant for both invasion management and conservation. Graphic abstract

Funder

Deutsche Forschungsgemeinschaft

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3