Abstract
Abstract
Correlative species distribution modelling is a widely used method to predict potential species ranges but can suffer from limitations in integrating species’ fundamental niches. Therefore, they might underestimate suitable ranges, but including physiological information can improve accuracy of predictions and help identify mechanisms of e.g. range limitation. However, approaches using both, results from correlative as well as physiological investigations are rare, especially in research on seaweeds. Here, we provide results from both approaches to predict the suitable habitat range of Capreolia implexa (Rhodophyta) in its native range (Australia and New Zealand) and invaded range (Chile) under present and future climate scenarios (year 2100, rcp 2.6 and rcp 8.5). We used the Maxent modelling technique and physiological knowledge from a temperature tolerance experiment (2–20 °C) for thermal niche estimation. Results from both approaches suggest larger suitable habitat ranges under present day conditions for both regions than currently occupied. Abiotic range limitation in the native range led to underestimation of the suitable temperature range by Maxent (here lower temperature limit = 8.3 °C). Predictions based on the laboratory temperature tolerance experiment suggest additional suitable habitat in colder regions (here lower temperature limit = 6.6 ± 0.4 °C). Under future climate conditions, both native and invaded ranges should shift southward, which will lead to an overall loss of suitable habitat in the native range. Like that, rcp 8.5 conditions should reduce the native range to 50% of the present-day extent. We demonstrate the limitation of correlative SDM modelling for species that live on continental margins and that physiological experiments can help to identify species’ niches beyond correlative analyses, providing valuable information for range projections. Furthermore, we provide valuable insights relevant for both invasion management and conservation.
Graphic abstract
Funder
Deutsche Forschungsgemeinschaft
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Ecology, Evolution, Behavior and Systematics
Reference64 articles.
1. Aiello-Lammens ME, Boria RA, Radosavljevic A et al. (2014) spThin: functions for spatial thinning of species occurrence records for use in ecological models
2. Andersen RA, Berges JA, Harrison PJ et al (2005) Appendix a—recipes for freshwater and seawater media. In: Anderson RA (ed) Algal culturing techniques. Academic Press, Burlington
3. Assis J, Tyberghein L, Bosch S et al (2017) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284
4. Assis J, Araújo MB, Serrão EA (2018) Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob Change Biol 24:e55–e66
5. Bartsch I, Paar M, Fredriksen S et al (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol 39:2021–2036
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献