Large‐scale deviations between realized and fundamental thermal niches in global seaweed distributions

Author:

Laeseke Philipp1ORCID,Martínez Brezo D.‐C.2ORCID,Bischof Kai3ORCID

Affiliation:

1. Department of Marine Botany University of Bremen Bremen Germany

2. Universidad Rey Juan Carlos, Área de Biodiversidad y Conservación Madrid Spain

3. Marine Botany University of Bremen & MARUM Bremen Germany

Abstract

AbstractAimClimate change has profound effects on species' distributions, and it is crucial to understand how well physiological limits correspond to distribution patterns to provide realistic estimations of future range shifts and/or extinctions. Seaweeds are foundation species of global coastal ecosystems, and sea surface temperature is a main predictor to explain their distributions and redistributions under global warming. We here test the hypothesis that, in contrast to other marine ectotherms, physiological knowledge of temperature niches is a weak predictor for seaweed distributions.LocationGlobal.Time PeriodPresent (1984–2019).TaxaSeaweeds.MethodsWe analysed the predictive power of physiological temperature limits to predict real‐world distributions in 126 globally distributed seaweed species with linear and generalized linear mixed models.ResultsIn 72% of the species, there was a difference of ≥|2|°C between the physiological and the realized thermal limits. Both, thermal underfilling (distributional thermal limits narrower than the physiological limits) and overfilling (distributional thermal limits wider than the physiological limits) were present. Thus, in only 28% of the species the physiological limits corresponded to the distributional limits. While heat‐tolerance is a significant predictor for upper distributional temperature limits, we found no relationship between cold‐tolerance and lower distributional temperature limits and the latter two seem to be independent.Main ConclusionsPhysiological thermal limits have limited predictive power for seaweed distributions and deviations may be large. Especially cold‐tolerances are a weak predictor, and forecasting of migrations under changing global conditions (e.g. towards the poles) will need special attention. This indicates that responses towards climate change might be highly variable between seaweed species and difficult to predict. Further, nearly 60% of the investigated species had populations which are close to or beyond their reported upper survival limits and are thus probably under threat of eradication by elevation of sea surface temperature.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3