A Comprehensive Review on Deep Synergistic Drug Prediction Techniques for Cancer
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Link
https://link.springer.com/content/pdf/10.1007/s11831-021-09617-3.pdf
Reference113 articles.
1. Humphrey RW et al (2011) Opportunities and challenges in the development of experimental drug combinations for cancer. J Natl Cancer Inst 103(16):1222–1226
2. Huang Y et al (2016) Fulvestrant reverses doxorubicin resistance in multidrug-resistant breast cell lines independent of estrogen receptor expression. Oncol Rep 37:705–712
3. Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894
4. Goswami C et al (2015) A new drug combinatory effect prediction algorithm on the cancer cell based on gene expression and dose-response curve. CPT Pharmacometr Syst Pharmacol 4:80–90
5. Bulusu K,et al. (2016) Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov Today 21:225–238
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Combination therapy synergism prediction for virus treatment using machine learning models;PLOS ONE;2024-09-04
2. PermuteDDS: a permutable feature fusion network for drug-drug synergy prediction;Journal of Cheminformatics;2024-04-15
3. A review on graph neural networks for predicting synergistic drug combinations;Artificial Intelligence Review;2024-02-13
4. A Deep Neural Network for Predicting Synergistic Drug Combinations on Cancer;Interdisciplinary Sciences: Computational Life Sciences;2024-01-06
5. Deep Artificial Neural Network Regression Model for Synergistic Drug Combination Prediction;Studies in Systems, Decision and Control;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3