Towards Bidirectional and Coadaptive Robotic Exoskeletons for Neuromotor Rehabilitation and Assisted Daily Living: a Review

Author:

Kirchner Elsa AndreaORCID,Bütefür Judith

Abstract

Abstract Purpose of Review Starting with a technical categorization and an overview of current exoskeletons and orthoses and their applications, this review focuses on robotic exoskeletons and orthoses for neuromotor rehabilitation and relevant research needed to provide individualized adaptive support to people under complex environmental conditions, such as assisted daily living. Recent Findings Many different approaches from the field of autonomous robots have recently been applied to the control of exoskeletons. In addition, approaches from the field of brain-computer interfaces for intention recognition are being intensively researched to improve interaction. Finally, besides stimulation, bidirectional feedback and feedback-based learning are recognized as very important to enable individualized, flexible, and adaptive human assistance. Summary AI-based methods for adaptation and online learning of robotic exoskeleton control, combined with intrinsic recognition of human intentions and consent, will in particular lead to improving the quality of human–robot interaction and thus user satisfaction with exoskeleton-based rehabilitation interventions.

Funder

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3