Experimental investigation of flow field and string cavitation inside a transparent real-size GDI nozzle

Author:

Mamaikin DmitriiORCID,Knorsch Tobias,Rogler Philipp,Wensing Michael

Abstract

Abstract Gasoline direct injection engines are highly dependent on the spray performance and associated combustion quality. The spray formation depends on many factors, namely internal flow characteristics, injection conditions, ambient conditions and fuel properties. There have been many studies performed to obtain a better understanding of these factors in recent years. In contrast to the others, studies on the internal flow characteristics are often performed numerically, as such, relevant experimental data is still lacking. Experimental investigations of the internal flow, such as flow turbulence, velocity distribution and cavitation are especially challenging under realistic conditions. Therefore, these conditions are generally simplified to diminish the demand for specialized experimental equipment and facilitate the measurements. In this regard, experimental data under relevant conditions are of high interest in the spray community. This work is focused on the internal flow study of multi-hole transparent nozzles under transient conditions at 1:1 geometrical scale. Injection pressure up to 100 bar is applied. The formation and development of string cavitation inside the nozzle hole are observed and presented in detail. For that, a novel ultra high-speed imaging technique at 5 MHz is applied. This technique in combination with the micro particle image velocimetry method, is then able to help to produce the velocity distribution of the internal flow. The velocity data is used further to reconstruct the pressure inside the nozzle by applying the Reynolds-averaged Navier–Stokes equations. Thus, the unique experimental data for the pressure distribution of the liquid fuel is obtained. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3