Measurement of needle and armature dynamics in a gasoline direct injector by high-speed neutron imaging

Author:

Wissink ML1ORCID,Toops TJ1,Splitter DA1ORCID,Nafziger EJ1ORCID,Finney CEA1,Bilheux HZ2,Zhang Y2

Affiliation:

1. Energy Science and Technology Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA

2. Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

In modern spark ignition engines, precise delivery of fuel with gasoline direct injection has become increasingly important in the effort to meet ever stricter efficiency and emissions regulations. Use of multiple small close-coupled injections has become more common in attempt to precisely control fuel distribution in the cylinder, but these strategies are hindered by nonlinear injection effects due to operation in the ballistic region of the solenoid-operated valve and due to armature bounce at the end of injection. Understanding the internal dynamics of the injector is crucial to minimizing and controlling non-linearity and shot-to-shot variation, but the experimental techniques available to date are capable only of tracking the position of either the top of the needle (via laser sensors or by monitoring current and voltage in the solenoid coil) or the bottom of the needle (via transparent nozzles or high-speed x-ray imaging). A complete picture of the axial and radial motion of valve needle has until now remained elusive. In this work, we present high-speed ensemble neutron transmission imaging of an entire 8-hole gasoline direct injector operating at 200 bar, allowing for both visualization and quantification of the actuation dynamics including lift and wobble of the valve ball, oscillation and bending of the valve needle, lift, rocking, and bounce of the armature, compression of the springs, and radial swelling of the solenoid during energization. Because neutrons offer high penetration through the metal injector while also being sensitive to the 1H nuclei in fuel molecules, it is also possible to simultaneously see the fluid dynamics of the injection process, including filling of the sac volume, emanation of the spray through the nozzle holes and into the downstream gas, and the formation and evolution of fuel films on the tip of the injector and the walls of the spray container.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3