PIV investigation of high Reynolds number submerged water jets at high-pressure ambient conditions

Author:

Jasper SarahORCID,Hussong JeanetteORCID,Lindken RalphORCID

Abstract

AbstractHigh-pressure water jets bear a great technological potential to enhance geothermal deep drilling. Compared to existing water cutting technologies, significantly different operation conditions are encountered under deep-drilling conditions, such as high ambient pressures. The fundamental fluid mechanics are significantly affected by those operation conditions. In this work we examine the influence of increasing ambient pressure of up to 12.0 MPa on the water jet characteristics under submerged drilling conditions. PIV measurements of the jet flow field at changing cavitation numbers reveal two characteristic regimes, which are distinguished by a critical cavitation number. In the cavitating regime, the jet decays considerably faster with increasing distance to the nozzle than in the non-cavitating regime. In addition to that, an increasing cavitation intensity shortens the potential core length of the water jet and increases the jet spreading angle and with this has a similar effect on the jet as increasing turbulence intensity in single-phase flows. Related to the decreasing kinetic energy of the jet in the cavitating regime, the resulting impact force of the water jet on the specimen surface decreases with increasing cavitation intensity. Our investigations indicate that a technology transfer from water jet cutting to submerged jet drilling requires adjustments of both nozzle geometries and jet operation conditions. Graphic abstract

Funder

Ministry for innovation, science and research of the state of North Rhine-Westphalia, Germany

H2020 European Research Council

Hochschule Bochum

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3