Acoustic modes of self-excited cavitating waterjets on rock erosion

Author:

Chamorro Leonardo P.1234ORCID

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois 3 , Urbana, Illinois 61801, USA

2. Department of Aerospace Engineering, University of Illinois 4 , Urbana, Illinois 61801, USA

3. Department of Civil and Environmental Engineering, University of Illinois 5 , Urbana, Illinois 61801, USA

4. Department of Geology, University of Illinois 6 , Urbana, Illinois 61801, USA

Abstract

This study experimentally investigates the impact of passive acoustic excitation modes from self-excited cavitating waterjet clouds on erosive patterns using high-speed imaging, scanning electron microscopy, and macroscopic three-dimensional scanning. Basalt, granite, and sandstone were used to study erosion and breaking mechanisms under various excitation modes, including sub-harmonic, fundamental, double-harmonic, and a case without feedback based on the primary cavitation cloud shedding frequency. Proper orthogonal decomposition of high-speed snapshots revealed that the cavitation cloud shed primary and secondary modes with passive acoustic excitation. The fundamental excitation mode promoted the primary cavitation cloud's volume and development, and energy transfers from secondary to primary modes resulted in the maximum cavitation cloud volume inducing the best rock-breaking ability. Macroscopic and microscopic inspection of the rock coupons' topographies revealed that the breaking mechanism involves a continuous peeling off of mineral grains under the cavitation cloud's impact.

Funder

Ministry of Science and Technology of the People's Republic of China

Ministry of Education of the People's Republic of China

University of Science and Technology Beijing

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3