The structure of near-wall re-entrant flow and its influence on cloud cavitation instability

Author:

Gawandalkar UdhavORCID,Poelma ChristianORCID

Abstract

Abstract The so-called ‘re-entrant jet’ is fundamental to periodic cloud shedding in partial cavitation. However, the exact physical mechanism governing this phenomenon remains ambiguous. The complicated topology of the re-entrant flow renders whole-field, detailed measurement of the re-entrant flow cumbersome. Hence, most studies in the past have derived a physical understanding of this phenomenon from qualitative analyses of the re-entrant jet. Thus, quantitative studies are scarce in the literature. In this work, we present a methodology to experimentally measure the re-entrant flow below the vapour cavity in an axisymmetric venturi. The axisymmetry of the flow geometry is exploited to image tracer particles in the near-wall re-entrant flow. The main objective of employing tomographic imaging and subsequent velocimetry is to resolve the thickness and the velocity of the re-entrant flow. Additionally, phase-averaging conditioned on cavity length sheds light on the temporal evolution of re-entrant flow in a shedding cycle. The measured re-entrant film is as thick as $$\sim 1.2$$ 1.2 mm for a maximum cavity length of $$\sim 0.9 D_{t}$$ 0.9 D t , where $$D_{t}$$ D t is the venturi throat diameter. However, the re-entrant film thickness at higher cavitation number is measured to be about 0.5 mm. Further, the re-entrant flow is seen to attain a maximum velocity up to half the throat velocity as the vapour cavity grows in time and the re-entrant flow thickens. We observe that a complex spatio-temporal evolution of re-entrant flow is involved in the cavity detachment and periodic cloud shedding. Finally, we apply the demonstrated methodology to study the evolution of the near-wall liquid flow, below the vapour cavity in different cavity shedding flow regimes. The role of two main mechanisms responsible for cloud shedding, i.e. (i) the adverse-pressure gradient driven re-entrant jet, and (ii) the bubbly shock wave emanating from the cloud collapse are quantitatively assessed. We observe that the thickness of the re-entrant liquid film with respect to the cavity thickness can influence the cavity shedding behaviour. Further, we show that both the mechanisms could be operating at a given flow condition, with one of them dominating to dictate the cloud shedding behaviour. Graphical abstract

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3