Theory-assisted optical ray tracing to extract cavitation-bubble shapes from experiment

Author:

Koch MaxORCID,Rosselló Juan M.ORCID,Lechner ChristianeORCID,Lauterborn Werner,Eisener Julian,Mettin RobertORCID

Abstract

AbstractExperimental analysis of cavitation bubble dynamics typically uses optical imaging and photographic recording. However, the images are often severely affected by distortions and shadows due to refraction and total reflection of the illuminating light at the liquid–gas interface of the bubble. Optical ray tracing may become a powerful tool for the analysis process by assisting in the comparison of experiments to numerical two-phase flow simulations. The novelty of the present approach consists in digitizing almost the complete experimental arrangement with all its optically relevant elements and objects—including a numerical model of the yet unknown bubble—and numerically photographing the scene via ray tracing. The method is applied to the jetting dynamics of single bubbles collapsing at a solid wall. Here, ray tracing can help in the interpretation of raw experimental data concerning the complex bubble interface deformations and internal structures during the collapse. The precise shape of the highly dynamical bubbles can be inferred, thus ray tracing provides a correction method for velocity values of the liquid jets. Strong evidence is found for the existence of an ultra-short-time, fast jet, exceeding velocities known to date in the field. Graphic abstract

Funder

Deutsche Forschungsgemeinschaft

Alexander von Humboldt-Stiftung

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Reference39 articles.

1. Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos Trans R Soc Lond Ser A Math Phys Sci 260:221–240

2. Blake JR, Leppinen DM, Wang Q (2015) Cavitation and bubble dynamics: the Kelvin impulse and its applications. Interface Focus 5:20150017

3. Blender Foundation and Community (v. 2.82) (2020) Cycles-blender manual. English. https://docs.blender.org/manual/en/latest/render/cycles/index.html. Accessed Aug 2020

4. Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, Oxford

5. Craig KJ, Marsberg J, Meyer JP (2016) Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver. AIP Conf Proc 1734:030009. https://doi.org/10.1063/1.49490611734

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3