Dynamics of a cavitation bubble confined in a thin liquid layer at null Kelvin impulse

Author:

Zevnik Jure1ORCID,Patfoort Julien2ORCID,Rosselló Juan Manuel1ORCID,Ohl Claus-Dieter3ORCID,Dular Matevž1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Ljubljana 1 , Aškerčeva cesta 6, Ljubljana, Slovenia

2. Polytechnic Institute of Bordeaux 2 , Av. des Facultés, 33405 Talence, France

3. Institute of Physics, Otto von Guericke University Magdeburg 3 , Universitätplatz 2, Magdeburg, Germany

Abstract

In this work, we experimentally and numerically investigate cavitation bubble dynamics in a thin liquid layer surrounded by gas. We focus on configurations featuring strongly confined bubbles at dimensionless bubble-free surface stand-off distances D* below unity. Additionally, we impose the condition of null Kelvin impulse, subjecting a bubble to the oppositely equal influence of two opposing free surfaces, resulting in the formation of two convergent water jets. We observe a diverse spectrum of jetting phenomena, including broad jets, mushroom-capped jets, and cylindrical jets. These jets become progressively thinner and faster with lower D* values, reaching radii as small as 3% of the maximal bubble radius and speeds up to 150 m/s. Numerical results reveal a linear relationship between the jet impact velocity and the local curvature at the bubble region proximal to the free surface. This suggests that the magnitude of bubble deformation during its growth phase is the primary factor influencing the observed fivefold increase in the jet impact velocity in the parameter space considered. Our findings show that bubble collapse intensity is progressively dampened with increased confinement of its environment. As D* decreases beyond a critical value, the liquid layer separating the bubble and ambient air thins, leading to the onset of interfacial shape instabilities, its breakdown, and bubble atomization. Furthermore, we compare bubbles at zero Kelvin impulse to corresponding anisotropic scenarios with a single free surface, revealing that the dynamics of axial jets until the time of impact is primarily influenced by the proximal free surface. The impact of convergent axial jets at null Kelvin impulse results in local pressure transients up to 100 MPa and triggers the formation of a fast and thin annular outflow in the form of a liquid sheet, affected by the Rayleigh–Plateau and flapping shape instability.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

H2020 European Research Council

H2020 Marie Skłodowska-Curie Actions

Alexander von Humboldt-Stiftung

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3