Interplay of the leading-edge vortex and the tip vortex of a low-aspect-ratio thin wing

Author:

Dong LeiORCID,Choi Kwing-SoORCID,Mao Xuerui

Abstract

Abstract Three-dimensional vortical structures and their interaction over a low-aspect-ratio thin wing have been studied via particle image velocimetry at the chord Reynolds number of $$10^5$$ 10 5 . The maximum lift of this thin wing is found at an angle of attack of $$42^\circ$$ 42 . The flow separates at the leading-edge and reattaches to the wing surface, forming a strong leading-edge vortex which plays an important role on the total lift. The results show that the induced velocity of the tip vortex increases with the angle of attack, which helps reattach the separated flow and maintains the leading-edge vortex. Turbulent mixing indicated by the high Reynolds stress can be observed near the leading-edge due to an intense interaction between the leading-edge vortex and the tip vortex; however, the reattachment point of the leading-edge vortex moves upstream closer to the wing tip. Graphic abstract

Funder

Engineering and Physical Sciences Research Council

China Scholarship Council

University of Nottingham

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3