Unsteady force generation and vortex dynamics of pitching and plunging aerofoils

Author:

Baik Yeon Sik,Bernal Luis P.,Granlund Kenneth,Ol Michael V.

Abstract

AbstractExperimental studies of the flow topology, leading-edge vortex dynamics and unsteady force produced by pitching and plunging flat-plate aerofoils in forward flight at Reynolds numbers in the range 5000–20 000 are described. We consider the effects of varying frequency and plunge amplitude for the same effective angle-of-attack time history. The effective angle-of-attack history is a sinusoidal oscillation in the range$\ensuremath{-} 6$to$2{2}^{\ensuremath{\circ} } $with mean of${8}^{\ensuremath{\circ} } $and amplitude of$1{4}^{\ensuremath{\circ} } $. The reduced frequency is varied in the range 0.314–1.0 and the Strouhal number range is 0.10–0.48. Results show that for constant effective angle of attack, the flow evolution is independent of Strouhal number, and as the reduced frequency is increased the leading-edge vortex (LEV) separates later in phase during the downstroke. The LEV trajectory, circulation and area are reported. It is shown that the effective angle of attack and reduced frequency determine the flow evolution, and the Strouhal number is the main parameter determining the aerodynamic force acting on the aerofoil. At low Strouhal numbers, the lift coefficient is proportional to the effective angle of attack, indicating the validity of the quasi-steady approximation. Large values of force coefficients (${\ensuremath{\sim} }6$) are measured at high Strouhal number. The measurement results are compared with linear potential flow theory and found to be in reasonable agreement. During the downstroke, when the LEV is present, better agreement is found when the wake effect is ignored for both the lift and drag coefficients.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3