Abstract
AbstractGravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects—neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates.
Funder
national science foundation
australian research council
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous)
Cited by
128 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献