Brickwall in rotating BTZ: a dip-ramp-plateau story

Author:

Das Suman,Kundu Arnab

Abstract

Abstract In this article, building on our recent investigations and motivated by the fuzzball-paradigm, we explore normal modes of a probe massless scalar field in the rotating BTZ-geometry in an asymptotically AdS spacetime and correspondingly obtain the Spectral Form Factor (SFF) of the scalar field. In particular, we analyze the SFF obtained from the single-particle partition function. We observe that, a non-trivial Dip-Ramp-Plateau (DRP) structure, with a Ramp of slope one (within numerical precision) exists in the SFF which is obtained from the grand-canonical partition function. This behaviour is observed to remain stable close to extremality as well. However, at exact extremality, we observe a loss of the DRP-structure in the corresponding SFF. Technically, we have used two methods to obtain our results: (i) An explicit and direct numerical solution of the boundary conditions to obtain the normal modes, (ii) A WKB-approximation, which yields analytic, semi-analytic and efficient numerical solutions for the modes in various regimes. We further re-visit the non-rotating case and elucidate the effectiveness of the WKB-approximation in this case, which allows for an analytic expression of the normal modes in the regime where a level-repulsion exists. This regime corresponds to the lower end of the spectrum as a function of the scalar angular momentum, while the higher end of this spectrum tends to become flat. By analyzing the classical stress-tensor of the probe sector, we further demonstrate that the back-reaction of the scalar field grows fast as the angular momenta of the scalar modes increase in the large angular momenta regime, while the back-reaction remains controllably small in the regime where the spectrum has non-trivial level correlations. This further justifies cutting the spectrum off at a suitable value of the scalar angular momenta, beyond which the scalar back-reaction significantly modifies the background geometry.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3