A smooth horizon without a smooth horizon

Author:

Burman Vaibhav,Das Suchetan,Krishnan Chethan

Abstract

Abstract Recent observations on type III algebras in AdS/CFT raise the possibility that smoothness of the black hole horizon is an emergent feature of the large-N limit. In this paper, we present a bulk model for the finite-N mechanism underlying this transition. We quantize a free scalar field on a BTZ black hole with a Planckian stretched horizon placed as a Dirichlet boundary for the field. This is a tractable model for the stretched horizon that does not ignore the angular directions, and it defines a black hole vacuum which has similarities to (but is distinct from) the Boulware state. Using analytic approximations for the normal modes, we first improve upon ’t Hooft’s brick wall calculation: we are able to match both the entropy and the temperature, exactly. Emboldened by this, we compute the boundary Wightman function of the scalar field in a typical pure state built on our stretched horizon vacuum, at an energy sliver at the mass of the black hole. A key result is that despite the manifest lack of smoothness, this single-sided pure state calculation yields precisely the Hartle-Hawking thermal correlator associated to the smooth horizon, in the small-GN limit. At finite GN, there are variance corrections that are suppressed as $$ \mathcal{O}\left({e}^{-{S}_{BH}/2}\right) $$ O e S BH / 2 . They become important at late times and resolve Maldacena’s information paradox. Highly excited typical pure states on the stretched horizon vacuum are therefore models for black hole microstates, while the smooth horizon describes the thermal state. We note that heavy excited states on the stretched horizon are better defined than the vacuum itself. These results suggest that complementarity in the bulk EFT could arise from a UV complete bulk description in which the black hole interior is not manifest.

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chaotic and thermal aspects in the highly excited string S-matrix;Journal of High Energy Physics;2024-08-23

2. Brickwall, normal modes, and emerging thermality;Physical Review D;2024-06-27

3. Moving interfaces and two-dimensional black holes;Journal of High Energy Physics;2024-05-30

4. Behind-the-horizon excitations from a single 2d CFT;Journal of High Energy Physics;2024-05-28

5. State-independent black hole interiors from the crossed product;Journal of High Energy Physics;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3