Abstract
Abstract
We introduce the gluequark Dark Matter candidate, an accidentally stable bound state made of adjoint fermions and gluons from a new confining gauge force. Such scenario displays an unusual cosmological history where perturbative freeze-out is followed by a non-perturbative re-annihilation period with possible entropy injection. When the gluequark has electroweak quantum numbers, the critical density is obtained for masses as large as PeV. Independently of its mass, the size of the gluequark is determined by the confinement scale of the theory, leading at low energies to annihilation rates and elastic cross sections which are large for particle physics standards and potentially observable in indirect detection experiments.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献